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Abstract. Quantum mechanics may be formulated in pseudo-phasespace in the Weyl 
picture. The semiclassical expression for the Weyl transform of the usual time evolution 
operator is evaluated by summing over paths a semiclassical approximation for a new 
propagator in pseudo-phasespace. As an example the Bohr-Sommerfeld quantisation 
rule is recovered. The new propagator may in principle be used to construct other 
interesting quantities, such as the propagator governing the time evolution of the Wigner 
function. 

1. Introduction 

The usual formation of quantum mechanics in terms of operators on a Hilbert space 
has, by means of the Weyl picture, a completely equivalent expression in terms of 
functions defined on what might be termed a pseudo-phasespace (p. q )  (Weyl 1927, 
1931, Wigner 1932, Moyal 1949, Imre er (11 1967, Leaf 1968a, b). But the formula- 
tion seems generally to encourage only wide ranging non-specific analyses of the 
interface between classical mechanics and quantum mechanics. A notable recent 
exception to this is a paper by Berry (1977), who exhibits in the Weyl picture the form 
of a quantum pure state in both the usual semiclassical and uniform approximations. 

In the present paper we derive the semiclassical approximation, in the Weyl 
picture, for the time evolution operator (9: 5) by defining a new propagator ( $ 4 )  
appropriate to the pseudo-phasespace of the Wigner-Weyl picture (9: 2). This new 
propagator bears some similarity to the usual propagator ( x t l x ' O )  of quantum 
mechanics and may be summed over paths. Indeed, the well known results of 
semiclassical path sums on ( x t l x ' O )  outlined in 9: 3 may be taken over formally to 
pseudo-phasespace. In 9: 6 we briefly consider the Bohr-Sommerfeld quantisation 
rule from the standpoint of pseudo-phasespace. Possible future applications of the 
Weyl picture to semiclassical approximations are suggested in 9: 7. 

2. The Wigner-Weyl picture 

Throughout this paper we assume that the pseudo-phasespace formulation is fairly 
well known. In any case, thorough discussions are given in many references. An 
easily read general treatment is given by de Groot and Suttorp (1972). Papers by 
Moyal (1949), Leaf (1968a, b) and Imre er a1 (1967) also provide a general view. 

0305-4770/78/0011-2179$02.00 0 1978 The Institute of Physics 2179 



2180 T B Smith 

The Weyl transform relating any operator A to its Weyl equivalent A@q) may be 
written 

A@,q)=Tr(AA@, 4)) (1) 

where the Hermitian operator A is given formally by 

Throughout we shall work for simplicity in one dimension. 
A special case is the Wigner function (Wigner 1932) p@qt) which may be defined 

as the Weyl transform of the density matrix pt. The time propagation of the Wigner 
function is briefly considered in 00 4 and 7 .  

Two properties of the operator A which we shall need are 

Tr(A@q)A@oqo)) = ha@ -Po)S(4 -40). (5  1 
Now part of the attraction of this picture of quantum mechanics is that it sometimes 
has a classical ‘look’ to it. For example, one can show that the trace of the product of 
two operators takes the following form: 

W A B )  = [ (dP dq/h)A@q)B@q). (6) 

Thus, since the Weyl transform of the unit operator is unity, we have for the density 
matrix 

The Weyl picture is of course fully quantum. For example, the Weyl transform of the 
product A B  of two operators is not the product of the seperate Weyl transforms, but 
is given by 

Here the starred operators act to the left on A@q) only. 

3. The usual semiclassical path summation 

In the customary formulation of quantum mechanics by path summation (Feynman 
and Hibbs 1965) one works with the propagator 

(XtlX’O) = (XlU,\X’). 

By splitting the interval (0, t )  into a large number of subintervals At, one may express 
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the propagator as a sum over paths in position. In particular we may write 

$ ( x t )  = J dx‘ . . . dx”(xt1x’t - A t ) ( x ’ t  - At1 . . .)(x“O/$o) (8 1 

where the initial state is 

$(x, 0 )  = (xO/$o). 

In the customary semiclassical approximation one obtains a semiclassical approxima- 
tion for the short-time propagator ( x t l x ’ t  - At) and then performs the path sum (8) in 
the sense of stationary phase (Berry and Mount 1972). 

If we consider an n-dimensional system xi, where i = 1 , 2 , .  , . n, then the short- 
time semiclassical propagator is (Van Vleck 1928, Berry and Mount 1972, Maslov 
1962) 

Here S is the action, calculated for classical motion according to Hamilton’s equa- 
tions, and considered as a function of x, x’ and t .  

In the process of using approximation (9) to obtain a semiclassical approximation 
for $(x, t )  in the sense of stationary phase, one needs to take care at focal points 
(caustics). This has been considered with considerable mathematical honesty by 
Maslov (1962) and we now briefly summarise the relevant results. 

For a Hamiltonian 

1 $p? + V(x1, x 2 .  . . x , )  
i 

the final state becomes, in the semiclassical approximation (theorem 1 . 1  of Maslov’s 
paper), 

In this expression the initial state is assumed to have the form 

$(x, o>=  4(x)exp(ilhlf(x). (1 1) 

X,(r = 0) = xoi ( 1 2 a )  

Xi ( t  = 0) = gradi f ( x o )  (126) 

Xi(XLk), t)  = xi. (13) 

The process X i ( x f ’ ,  t )  is a solution to Hamilton’s equations with initial conditions 

and the initial value xo is chosen so that (for given t and x )  

Since there may be more than one initial position x o  satisfying this equation, we label 
them by a superscript k, thus xb”‘. Equation (13) thus determines the initial values xLk) 
as a function of given values of x and t .  

In equation (10) the action S is calculated for the process Xi(xbk), T) with t 5 T 2 0 
and the phases m are the contributions of the focal points to the kth classical path 
X(xbk’, 7). Focal points are those points along the trajectory such that the deter- 
minant in the denominator of equation (10) vanishes. The index m of the kth classical 
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path is the sum of all the foci lying on this path where the index of a particular focus is 
( n  -a) /2;  here n is the dimension of the problem and cr is the signature (number of 
positive minus number of negative eigenvalues) of the matrix 

l imM(t’+E).  M - ’ ( ~ ’ - E )  
F - 0  

where the focus occurs at time t‘ along the path and the matrix M is given by 

M,,(xo, t )  = aX(xo ,  r)/axo,. (14) 
In 9: 4 we shall calculate a path summation scheme in the Wigner-Weyl picture that 

will allow us to adapt these results to find in B 5 a semiclassical approximation for the 
Weyl transform of the time evolution operator U,. 

4. Propagators in pseudo-phasespace 

Particularising to time-independent Hamiltonians, the time evolution operator in 
Hilbert space is 

(15) 

By means of this and the Hermitian operator A, it is possible to construct a propagator 
in pseudo-phasespace that takes an initial state represented by the density matrix po to 
its evolved state p, at subsequent times t. Writing this well known propagator as 
P(pqtlpoqoto) we have (Leaf 1968a, b, de Groot and Suttorp 1972) 

U, = exp [ (- i / h)Ht].  

(16) 

This is the equivalent expression, in the Wigner-Weyl picture, to the time evolution in 
Hilbert space 

PI = Ut-rdoU?-rd. 
The details are clearly set down in de Groot and Suttorp’s book. The propagator P is 
defined as 

P(pqtipoqoto) = h -  Tr{U;-to A ( p q ) U r - , ~ ( p o q o ) ~ .  (17) 

Using this definition together with equations (1) and (6), one may show that P obeys 
the ‘Markov property’ consistent with a path summation formulation: 

P(P4t IPoWo) = j dp1 dq 1 P(pqt1p 14 1 t l  ) P ( p , q ,  tl IPo4*to). (1 8) 

Two further properties of P are noteworthy. They are 

r-ro+0 lim P(pqtlpoqoto) = - p o P ( q  -40)  (19 )  

dp dq P(pqrlpoqot0) = 1. (20) 

It is our object in this paper to follow in pseudo-phasespace the time evolution, not 
of states p,, but rather of the propagator U, itself; we wish to propagate the initial 
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Weyl transform U(pqto) to later times t. For this we now define a new propagator in 
pseudo-phasespace and give several of its properties. The new propagator is denoted 
Q, where 

Q (~qtl~oqoto) = h -’ Tr{A(pq )U(r-r,,)/2A(~oqo) U(r-r,,)/2} 

and U, is given by equation (15). 
We may obtain the Weyl transform of U, by integrating Q 

equations (4) and (1) it follows (setting to = 0 for convenience) that 

~ ( p q t )  = J dpo  dqo Q(~qt l~oq00) .  

Furthermore, by using equation (6) it follows that Q satisfies the 

over poqo; using 

(22) 

Markov property 
(equation (18)) with P~replaced by Q. That Q assumes the initial value S ( p  -p0)6(q - 
qo) can easily be shown using equation (5). 

Q is then a suitable candidate for a path summation; one may find an approximate 
Q for short times and then construct the long-time propagator by summing paths. This 
is described in the next section, and explicitly set down, in the semiclassical limit. 
There we shall need the equation of motion obeyed by Q. This we now find. 

Setting to = 0 for convenience we have 

where the curly brackets indicate the anticommutator, and we have made use of the 
fact that H is time-independent and SO commutes with U at all times. 

Taking the Weyl transform of both sides of this equation (using equation (7)) gives 

where the linear operator L is defined by 

ih  a* a a* a 1 
I 2 aq ap a p  aq 

+CC Q L,,Q = ? H ( p q ) (  exp - (- --- -) 1 
where a*/dp and a*/aq operate to the lef; on H(pq),  the Weyl transform of the 
Hamiltonian H. 

5. Semiclassical path sum in pseudo-phasespace 

In order to extend the results outlined in 9 3 to obtain a semiclassical approximation in 
pseudo-phasespace, we must first find a short-time approximation for Q correspond- 
ing to the Van Vleck expression (9). To do this we mimick the method of van Vleck 
(1928) outlined by Mizrahi (1977), as it applies to the Wigner-Weyl picture. 

To find a semiclassical approximation for the new propagator Q we seek a solution 
to equation (23) in the form 

Q = C(pqt) exp[(i/h)D(pqt)l. (25) 

We have in this way extracted the non-analytical behaviour at the origip, h = 0, hoping 
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that D will have a well defined expansion in powers of h:  

D = a + h 2 b +  . . . .  
The function D is also assumed to be real-valued. 

To obtain equations of motion for C and a we replace the exact equation (23) by 
an equation correct to order h2.  That is, we require that the left-hand side of the exact 
equation 

Q-’[ih(a/at)-L,]Q = 0 

vanishes to orders zero and one in powers of h. Inserting the assumed form (25) for Q 
gives two equations of motion for C and a by equating to zero the coefficients of the 
zero and first-order powers of h. 

The algebra leading to these equations is fairly complicated but straightforward. 
Assuming a Hamiltonian of the form 

H ( p q ) =  (p2/2m)+ V ( q )  (26 )  
one finds that the equation resulting by equating the coefficient of the zero power of h 
to zero is 

This is a Hamilton-Jacobi equation with generalised two-dimensional Hamiltonian X 

where the generalised coordinates are ( x 1 x 2 ) -  ( p ,  4)  and corresponding momenta are 

aa aa 
( P l ,  P * ) + + ( a p .  aQ). 

Equating to zero the coefficient of the first power of h ,  we obtain the ‘equation of 
continuity’ for c2: 

The relevant formal solutions to equations like ( 2 7 )  and (29) are well known (Van 
Vleck 1928, Schiller 1962). We have 

a = S ( x t l x ’ 0 )  (30) 
where S is the action calculated for the classical trajectory connecting points ( x l ,  x 2 )  
and ( x i ,  xk) in time t (for small time t there will only be one such trajectory). For the 
quantity C we have 

C = const. (det a 2 a / a x i  ax ; ) ’” .  (31) 

Here the constant factor takes into account the arbitrary choice of phase and initial 
condition (19). 
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As a parenthetical comment we note that it is well known that semiclassical 
approximations such as (10)  or (25) ,  (30)  and ( 3 1 )  are exact for Hamiltonians at most 
quadratic in p and 4. 

Thus, for a harmonic oscillator 

~ ( p q ) = - - + - m w ~ q ’  P 2  1 
2m 2 

and one may show that the exact propagator Q is given by 

Q ( ~ i x 2 t l x ; x ; O )  

x { [ ( x :  + m ’ w ’ x : )  cos(wt/2) - ( x l x  i + m 2w 2 x 2 x ;  )I + [ x  - x ’ i l ~ .  

Now, according to equations (22) and (18)  (for Q ) ,  we may adapt the results 
obtained in 9: 3 to obtain a semiclassical approximation for U(pqt )  provided we 
replace the initial state +(x ,  0) by unity. Thus in equation (1 1 )  we must choose 4 = 1 
and f ( x )  = 0. The sum is now over variables ( x l ,  x z ) * ( p ,  4 ) .  

Since we are here working with a Hamiltonian 2 that is not of the form (26), we 
must take into account the fact that the generalised momenta pi are not the same as xi. 
A careful look at Maslov’s treatment, for instance, shows that initial conditions ( 1 2 )  
must be replaced by 

xi ( r  = 0 )  = xoi 

Pi(t = 0 )  = 0 

where Pi and Xi is the classical process in four-dimensional phasespace, with the 
Hamiltonian 2 given by equation (28).  

In general, the process X i ( ? )  is actually simply related to two one-dimensional 
systems. The Hamilton equations for X and P are 

x . I  - - _ -  :( V’(X2 - tP1) - V’(X2 + tPl)> 

PI = ( - l / m ) X l  

X2 = ( 1 / 4 m ) P ~  (34c)  
p ,  = - +( V ( X 2  - f P , )  + V’(X2 + tP1)). ( 3 4 4  

If we now define new quantities 

it then follows from equations (34) that 
p’ = - V‘(0’) 

P’ = P2 T 2x1. 

We now see that the plus and minus systems move independently of one another 
according to Newton’s law. Thus there are in general two independent constants of 
the motion corresponding to the energy of the two systems. According to equation 
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(35b),  where the ‘mass’ is 4m, we have the following two constants of the motion: 

E* = (1/8m)(P’)’+ V(Q*). (36)  

Thus the system (34)  is integrable. 
W e  also note that the full Hamiltonian X is a constant of motion and is given by 

x = $(E+ +E-) .  (37)  

Now initial conditions (33)  must be met. In particular, the initial momenta Pi must 
vanish. The  implications of this for the plus and minus systems follows from equations 
(3Sa)  and (35d) .  We have 

Q’(0) = Q-(O) 

P+(O) = -P-(o). 

It is then clear, in this special case, that the constants E+ and E-  become equal to each 
other and to X. 

We may express the action for the process (34)  in terms of the plus and minus 
systems. We  have (integrating by parts on XI), 

[ds  (1 PZ(s)X,(s)- X) 

P: x: 
= [PI  X1 ]A + 6’ d s  ( - + -) - Xt. 

4 m  m 

Expressing PZ and 
equation (37)  gives 

[ d s ( Z P i X i - X )  i 

Xi in terms of P’ by means of equation (35d)  and utilising 

One  recognises the last two terms in square brackets as the usual action for the plus 
and minus systems for a mass 4m under the force - V’(Q’). 

Finally, we must consider the contributions of focal points to the phase 
-(7r/2)m(xhk), t ) .  We must examine those times t’ such that det M(t’ )  = 0, under the 
conditions P,(O)= 0, where the two-by-two matrix M is given by equation (14). Let us 
define Q’(O)= Qo and P’(O)= Po. Then from equations ( 3 S a )  and ( 3 5 4  we have 
X1 = :(P- -P+)  and X2 = t(Q’+ Q-). Thus x o l  = - z f o  and xo2 = Qo, and the matrix 
becomes 

1 

- 2  axl/aPo axllaQo) 
M = (  -2 ax,laPo axzlaQo ’ 

The determinant of M is easily seen to be a multiple of the Poisson bracket of XI and 
X ,  : 
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In order to  examine the signature of the matrix M(t‘+ E)M-’(t‘ - E )  we require the 
inverse matrix to M. It is 

M--’ = aX2/aQo -axl/aQo) 
2 ax,/a~~ -2 axl/aPo 

That this is indeed the inverse to  M can be proved by direct multiplication. 
Focal points occur for those times t’ such that det M vanishes. The process 

(Xl, X,) is now a function of Po, Qo and t since the condition Pi(0) = 0 has now been 
subsumed. We shall have (for example) a caustic at any time t’  such that X1 is a 
constant. Expanding X1 to first order in a Taylor series in E at times t ’ f  E shows that, 
at such a focal point (leaving out the algebra), 

1 
0 -  

M(t’ + E ) .  M-l(t ‘  - E )  = ( -1 O j .  

To find the contribution to M of such a focal point we must evaluate (n  - a ) / 2 ,  where 
n = 2 and the signature (the number of positive minus the number of negative 
eigenvalues) is 1 - 1 = 0. The resulting contribution to M is unity. In general one can 
see that every focal point on the path contributes unity to M. Thus, referring to 
equation (10). the phase changes by -7r/2 at every focal point. 

In 0 6 we give an example of the above considerations by showing how to derive 
the Bohr-Sommerfeld quantisation rule for bound states. 

6. Energy quantisation for bound systems 

To obtain the semiclassical approximation for energy states we consider the density of 
states n ( E )  given by 

n ( E ) =  - ( l / r ) I m T r [ l / ( E  - H ) ] .  (43) 
The operator inside the trace may be expressed in the usual way by a Laplace integral: 

1 1 i 
-=- 6 d t  exp - ( E  -H)t .  
E - H  ii3 A 

The trace of an operator is given by equation (6) with B = 1. Thus the quantity to be 
approximated is 

Using the semiclassical approximation for the Weyl transformed propagator U(pqt )  
gives 

In equations (44) and (45) and in the following treatment we interpret U(pq  - t )  as the 
complex conjugate of U(p4t ) .  

In equation (45) the matrix M is defined by equation (14), where s k  is the action 
for the kth classical path and depends upon p ,  q and r, and mk is the corresponding 
index. Throughout, of course, the trajectories are calculated under the restriction 
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Pi(0) = 0 or, what is equivalent, equations (38). If we perform the time integral in 
equation (45) by stationary phase then the condition is that only those times contri- 
bute (in the sense of stationary phase) such that 

E + ask/at  = 0. (46) 

This determines the time t as a function of E and of (xi, x 2 )  = ( p ,  4) ,  the values of Xi at 
time t .  But s k  also satisfies the Hamilton-Jacobi equation (27) ,  so the motion of Xi  
occurs on the shell 2t = E. 

Since equation (46) determines t as a function of p ,  4 and E, we may define the 
energy-dependent action y k  by 

yk(E, X i ,  Xz)=Et(E, XI, Xz)+Sk(t(E, X I ,  X Z ) ,  X i ,  X Z ) .  (47) 

The integral in equation (45) on x 1  (that is p )  may also be performed by stationary 
phase. The stationary phase condition here is 

ay/axl = 0.  (48) 
But aY/dx1 is the generalised momentum P1 at the upper point (at time t ) .  Thus only 
those trajectories Xi contribute (in the sense of stationary phase) such that PI vanishes 
at time t .  Reference to equation (35a )  shows that, interpreted for the plus and minus 
systems, this condition means that 

P'(t) = -P-(t). (49) 
In summary, the conditions are now that equations (38a)  and (386) apply initially, 
whilst equation (49) applies at the later time t. Furthermore, both systems Q' and Q- 
move on the shell E' =E- = E .  Since we are assuming bound motion, these condi- 
tions mean that after time t the plus and minus systems will either have changed places 
on the shell in phasespace or done one or more complete circuits to return to their 
starting points, Thus, only times k T / 2  contribute (with k any integer) such that T is 
the period for one complete circuit for the plus or minus systems. At these times 
ldet MI will equal unity, but the stationary'phase integrals on t and p (= x l )  do give 
multiplicative factors. Collecting terms, one finds 

Where time t = k T / 2  is required to satisfy (48), and the factor of 2 arises from the fact 
that two values of x 1  contribute, corresponding to *P on the energy surface. 

To evaluate the term inside the square root we differentiate equation (48) with 
respect to x1 (holding x 2  constant) and equation (46) with respect to t ,  to obtain 
respectively 

a2yk a2Yk aE 
7 + - - = 0  
axl dEax, ax ,  

at2 at ' 

a 2 s k  aE -= _ _  

The pre-exponential factor in equation (50) now becomes 
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This is to be evaluated at times tk = k T / 2 ,  and it is easy to show that 

(dP l /d t )=  (1/2m)P'(E,  Q+). 

The other derivative, aE/axl ,  can be evaluated when we realise that, at times f k ,  Pz  
vanishes. This follows from equation ( 3 5 d )  and the condition that P' = -P-  at times 
t k .  Condition ( 3 3 b )  implies 2f = E. Thus from equation (28 )  

aE/ax, = x l / m  = - P + / 2 m .  

Collecting terms gives 

where a and b are the turning points. In this expression we recognise the period T as a 
function of energy of a bound particle, mass m, moving between turning points a and 
b :  

Finally we must find the phase contributions mk of the focal points. The matrix M 
is written in equation (40 )  in terms of X,. Making use of the fact that equations ( 3 8 )  
and (35 )  imply that P - ( t )  = - P + ( - t )  and Q-(t)  = Q'(-t) we may express XI in a form 
emphasising the symmetry inherent in this formalism: 

X 2  = i(Q'(t)+ Q'(-t)) 

x*= -- A(p+(r)+ p+(-r)). 

In general XI will vanish twice during each full period and (depending on the choice of 
origin) X2 will be a constant fwice during the same time. These four focal points 
contribute - 2 7  phase for each complete circuit. Each half-circuit T/2  contributes a 
phase -r. Since P 1  vanishes at the upper and lower points, the first contribution to 
the action in equation ( 3 9 )  vanishes and the second two contributions are equal. We 
then have (with negative values of k corresponding to negative times) 

- ( ~ / 2 ) m k  = - k r  

y k  = ( k / 2 )  4, P' dQ' = k f p dq. 

In the last step we have related the motion of the system for mass 4 m  to the actual 
system, mass m, just as we did for equation (5 1). We thus obtain 

m 

n ( E ) = ( l / h ) x  ~ ( E ) c o s k  
-m 

By applying the Poisson sum formula Berry and Mount (1972)  show that this expres- 
sion becomes 

m 

n ( E ) -  1 S ( E - E , )  
n = O  

where En is such that 

f p dq = (n  +&z. 



2190 T B Smith 

7. Discussion 

Equation ( 2 2 )  shows that the propagator Q defined in equation (21) can be used to 
generate the Weyl transform of trr. In this paper we have considered the semiclassical 
approximation to Q and indicated, as an example, how the corresponding semiclassi- 
cal approximation for U(pqr) gives rise to the usual Bohr-Sommerfeld energy quan- 
tisation rule. But Q can in principle be used to construct other interesting physical 
quantities. For instance, the time propagation of the Wigner function is governed by 
P, defined by equation (17). One may show after a little algebra that i t  is possible to 
express the propagator P in terms of U(pq t )  as follows: 

P ( ~ q d i 7 ~ q ~ O )  =-I 4 dp’dq’  U ( -  P + p o  +PI,-- 4+9o 
h 2  2 2 

‘Thus a sufficiently good semiclassical approximation foI the Weyl transform of Ut 
ought to generate an interesting approximation for P. This is being considered. 
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